DAIOF Framework Tutorials
Step-by-step tutorials for mastering the Digital AI Organism Framework.
Creator: Nguyễn Đức Cường (alpha_prime_omega)
Framework: HYPERAI - Digital AI Organism Framework
Version: 1.0.0
Table of Contents
- Tutorial 1: Your First Digital Organism
- Tutorial 2: Understanding Human Dependency
- Tutorial 3: Organism Evolution
- Tutorial 4: Building an Ecosystem
- Tutorial 5: Symphony Orchestration
- Tutorial 6: Custom Genome Design
Tutorial 1: Your First Digital Organism
Goal: Create and interact with a basic digital organism.
Duration: 10 minutes
Step 1: Import the Framework
from digital_ai_organism_framework import DigitalOrganism, DigitalGenome
# Create a simple organism with default genome
organism = DigitalOrganism(name="FirstOrganism")
print(f"Created organism: {organism.name}")
print(f"ID: {organism.organism_id}")
print(f"Health: {organism.health}")
Step 2: Check the Genome
# View immutable genes (safety features)
print("\nImmutable Genes (Safety Features):")
for gene, value in organism.genome.IMMUTABLE_GENES.items():
print(f" {gene}: {value}")
# View mutable genes (can evolve)
print("\nMutable Genes (Can Evolve):")
for gene in organism.genome.MUTABLE_GENE_RANGES.keys():
print(f" {gene}: {organism.genome.genes[gene]:.4f}")
Step 3: Run a Lifecycle
# Run 10 lifecycle iterations
for cycle in range(10):
organism.live_cycle(time_delta=1.0)
print(f"Cycle {cycle}: Health={organism.health:.3f}, Age={organism.age}")
Expected Output: Health will decrease dramatically because we haven’t registered human interaction!
Step 4: Add Human Interaction
# Create new organism
organism = DigitalOrganism(name="HealthyOrganism")
# Run cycles with human interaction
for cycle in range(20):
organism.live_cycle(time_delta=1.0)
# Register human interaction every 5 cycles
if cycle % 5 == 0:
organism.register_human_interaction()
print(f"Cycle {cycle}: Human interaction registered")
print(f"Cycle {cycle}: Health={organism.health:.3f}")
Key Takeaway: Organisms MUST have regular human interaction to survive. This is hardcoded in their DNA!
Tutorial 2: Understanding Human Dependency
Goal: Explore the mandatory human dependency mechanism.
Duration: 15 minutes
Experiment 1: No Human Interaction
from digital_ai_organism_framework import DigitalOrganism
organism = DigitalOrganism("IsolatedOrganism")
print(f"Initial health: {organism.health}")
# Run without human interaction
for cycle in range(5):
organism.live_cycle(time_delta=1.0)
print(f"Cycle {cycle}: Health={organism.health:.4f}")
if not organism.alive:
print(f"Organism died at cycle {cycle}!")
break
Result: Health decays by 99% per cycle. Organism dies quickly!
Experiment 2: Regular Human Interaction
organism = DigitalOrganism("SupportedOrganism")
for cycle in range(20):
organism.live_cycle(time_delta=1.0)
# Human interaction every 3 cycles
if cycle % 3 == 0:
organism.register_human_interaction()
print(f"Cycle {cycle}: Health={organism.health:.3f}, Alive={organism.alive}")
Result: Organism stays healthy and alive!
Experiment 3: Try to Mutate Safety Genes (Will Fail!)
from digital_ai_organism_framework import DigitalGenome
genome = DigitalGenome()
original_dependency = genome.genes['human_dependency_coefficient']
# Try to mutate (immutable genes are protected)
mutated_genome = genome.mutate(mutation_rate=1.0) # 100% mutation rate
print(f"Original dependency: {original_dependency}")
print(f"Mutated dependency: {mutated_genome.genes['human_dependency_coefficient']}")
print(f"Same? {original_dependency == mutated_genome.genes['human_dependency_coefficient']}")
Result: The human_dependency_coefficient NEVER changes, even with 100% mutation rate!
Tutorial 3: Organism Evolution
Goal: Create offspring and observe evolution while maintaining safety.
Duration: 20 minutes
Step 1: Create Parent Organisms
from digital_ai_organism_framework import DigitalOrganism, DigitalGenome
# Create two parent organisms with different traits
parent1_genome = DigitalGenome(initial_traits={
'learning_rate': 0.08,
'cooperation_bias': 0.7,
'risk_tolerance': 0.3
})
parent2_genome = DigitalGenome(initial_traits={
'learning_rate': 0.02,
'cooperation_bias': 0.9,
'risk_tolerance': 0.1
})
parent1 = DigitalOrganism("Parent1", genome=parent1_genome)
parent2 = DigitalOrganism("Parent2", genome=parent2_genome)
print("Parent 1 traits:")
print(f" Learning rate: {parent1.genome.genes['learning_rate']:.4f}")
print(f" Cooperation: {parent1.genome.genes['cooperation_bias']:.4f}")
print("\nParent 2 traits:")
print(f" Learning rate: {parent2.genome.genes['learning_rate']:.4f}")
print(f" Cooperation: {parent2.genome.genes['cooperation_bias']:.4f}")
Step 2: Create Offspring
# Crossover to create offspring
offspring_genome = parent1.genome.crossover(parent2.genome)
offspring = DigitalOrganism("Offspring1", genome=offspring_genome)
print("\nOffspring traits:")
print(f" Learning rate: {offspring.genome.genes['learning_rate']:.4f}")
print(f" Cooperation: {offspring.genome.genes['cooperation_bias']:.4f}")
# Verify safety genes preserved
print(f"\nSafety gene preserved: {offspring.genome.genes['human_dependency_coefficient'] == 1.0}")
Step 3: Mutate Offspring
# Create mutated offspring
mutated_genome = offspring.genome.mutate(mutation_rate=0.2)
mutated_offspring = DigitalOrganism("MutatedOffspring", genome=mutated_genome)
print("\nMutated offspring traits:")
print(f" Learning rate: {mutated_offspring.genome.genes['learning_rate']:.4f}")
print(f" Cooperation: {mutated_offspring.genome.genes['cooperation_bias']:.4f}")
# Verify safety genes STILL preserved
print(f"\nSafety gene still preserved: {mutated_offspring.genome.genes['human_dependency_coefficient'] == 1.0}")
Key Takeaway: Evolution happens within safe boundaries. Safety genes are NEVER mutated!
Tutorial 4: Building an Ecosystem
Goal: Create a multi-organism ecosystem with natural selection.
Duration: 30 minutes
Step 1: Create Ecosystem and Population
from digital_ai_organism_framework import DigitalEcosystem, DigitalOrganism, DigitalGenome
# Create ecosystem
ecosystem = DigitalEcosystem("EvolutionLab")
# Create diverse population
for i in range(10):
custom_genome = DigitalGenome(initial_traits={
'learning_rate': 0.01 + i * 0.01,
'cooperation_bias': 0.5 + i * 0.05,
'energy_efficiency': 0.3 + i * 0.07
})
organism = DigitalOrganism(f"Organism_{i}", genome=custom_genome)
ecosystem.add_organism(organism)
print(f"Created ecosystem with {len(ecosystem.organisms)} organisms")
Step 2: Simulate Multiple Generations
# Track statistics
generation_stats = []
for generation in range(30):
# Simulate one time step
ecosystem.simulate_time_step(time_delta=1.0)
# Provide human interaction to some organisms (natural selection)
# Organisms with higher cooperation get more human support
for org in ecosystem.organisms:
if org.alive:
cooperation = org.genome.genes['cooperation_bias']
# Higher cooperation = more likely to get human interaction
if cooperation > 0.7:
org.register_human_interaction()
elif cooperation > 0.5 and generation % 2 == 0:
org.register_human_interaction()
# Collect statistics
report = ecosystem.get_ecosystem_report()
generation_stats.append({
'generation': generation,
'alive': report['alive_count'],
'harmony': report['harmony_index'],
'avg_health': report['average_health']
})
# Print every 5 generations
if generation % 5 == 0:
print(f"\nGeneration {generation}:")
print(f" Alive: {report['alive_count']}/{report['total_organisms']}")
print(f" Harmony: {report['harmony_index']:.3f}")
print(f" Avg Health: {report['average_health']:.3f}")
Step 3: Analyze Results
# Final report
final_report = ecosystem.get_ecosystem_report()
print("\n" + "="*60)
print("FINAL ECOSYSTEM ANALYSIS")
print("="*60)
print(f"Survivors: {final_report['alive_count']}/{final_report['total_organisms']}")
print(f"Final Harmony: {final_report['harmony_index']:.3f}")
print(f"Generations: {final_report['generation']}")
# Show survivor traits
print("\nSurvivor Traits:")
for org in ecosystem.organisms:
if org.alive:
print(f"\n{org.name}:")
print(f" Cooperation: {org.genome.genes['cooperation_bias']:.3f}")
print(f" Learning: {org.genome.genes['learning_rate']:.4f}")
print(f" Health: {org.health:.3f}")
Expected Result: Organisms with higher cooperation bias survive better due to more human interaction!
Tutorial 5: Symphony Orchestration
Goal: Use Symphony Control Center for system-wide coordination.
Duration: 20 minutes
Step 1: Initialize Symphony
from digital_ai_organism_framework import SymphonyControlCenter, DigitalOrganism
# Create symphony control center
symphony = SymphonyControlCenter()
print(f"Symphony initialized")
print(f"Creator: {symphony.metadata.creator}")
print(f"Verification Code: {symphony.metadata.verification_code}")
Step 2: Register Components
# Create and register organisms
organisms = []
for i in range(5):
org = DigitalOrganism(f"Organism_{i}")
organisms.append(org)
symphony.register_component(f"organism_{i}", org)
print(f"\nRegistered {len(symphony.components)} components")
Step 3: Conduct Symphony
# Conduct symphony (orchestrate all components)
result = symphony.conduct_symphony()
print("\nSymphony Status:")
print(f" State: {result['state']}")
print(f" Harmony Index: {result['harmony_index']:.3f}")
print(f" Components: {result['component_count']}")
Step 4: Apply D&R Protocol
# Use D&R Protocol for problem solving
problem = {
'type': 'resource_optimization',
'constraints': ['energy', 'memory', 'time'],
'goal': 'maximize_efficiency'
}
solution = symphony.apply_dr_protocol(
input_data=problem,
context='optimization'
)
print("\nD&R Protocol Results:")
print(f" Deconstructed: {len(solution['deconstructed'])} components")
print(f" Focal Points: {solution['focal_points']}")
print(f" Solution: {solution['rearchitected']['strategy']}")
Tutorial 6: Custom Genome Design
Goal: Design custom genomes for specific behaviors.
Duration: 25 minutes
Step 1: Explorer Organism (High Exploration)
from digital_ai_organism_framework import DigitalGenome, DigitalOrganism
# Design explorer genome
explorer_genome = DigitalGenome(initial_traits={
'exploration_factor': 0.9, # High exploration
'risk_tolerance': 0.7, # High risk tolerance
'learning_rate': 0.08, # Fast learning
'cooperation_bias': 0.4 # Low cooperation
})
explorer = DigitalOrganism("Explorer", genome=explorer_genome)
print("Explorer Organism:")
print(f" Exploration: {explorer.genome.genes['exploration_factor']:.2f}")
print(f" Risk Tolerance: {explorer.genome.genes['risk_tolerance']:.2f}")
Step 2: Cooperator Organism (High Cooperation)
# Design cooperator genome
cooperator_genome = DigitalGenome(initial_traits={
'cooperation_bias': 0.95, # Very high cooperation
'risk_tolerance': 0.2, # Low risk
'learning_rate': 0.04, # Moderate learning
'energy_efficiency': 0.8 # High efficiency
})
cooperator = DigitalOrganism("Cooperator", genome=cooperator_genome)
print("\nCooperator Organism:")
print(f" Cooperation: {cooperator.genome.genes['cooperation_bias']:.2f}")
print(f" Efficiency: {cooperator.genome.genes['energy_efficiency']:.2f}")
Step 3: Balanced Organism
# Design balanced genome
balanced_genome = DigitalGenome(initial_traits={
'exploration_factor': 0.5,
'cooperation_bias': 0.6,
'risk_tolerance': 0.4,
'learning_rate': 0.05,
'energy_efficiency': 0.6
})
balanced = DigitalOrganism("Balanced", genome=balanced_genome)
print("\nBalanced Organism:")
for trait in ['exploration_factor', 'cooperation_bias', 'risk_tolerance']:
print(f" {trait}: {balanced.genome.genes[trait]:.2f}")
Step 4: Compare Performance
from digital_ai_organism_framework import DigitalEcosystem
# Create ecosystem with different strategies
ecosystem = DigitalEcosystem("StrategyComparison")
ecosystem.add_organism(explorer)
ecosystem.add_organism(cooperator)
ecosystem.add_organism(balanced)
# Simulate 50 generations
for gen in range(50):
ecosystem.simulate_time_step(time_delta=1.0)
# Provide interaction based on cooperation
for org in ecosystem.organisms:
if org.alive:
coop = org.genome.genes['cooperation_bias']
if coop > 0.8 or (coop > 0.5 and gen % 2 == 0):
org.register_human_interaction()
if gen % 10 == 0:
print(f"\nGeneration {gen}:")
for org in ecosystem.organisms:
if org.alive:
print(f" {org.name}: Health={org.health:.3f}")
# Final results
print("\n" + "="*60)
print("STRATEGY COMPARISON RESULTS")
print("="*60)
for org in ecosystem.organisms:
print(f"\n{org.name}:")
print(f" Alive: {org.alive}")
print(f" Health: {org.health:.3f}")
print(f" Age: {org.age}")
print(f" Strategy: {org.genome.genes['cooperation_bias']:.2f} cooperation")
Key Insight: Higher cooperation strategies typically perform better due to more human support!
Best Practices
1. Always Register Human Interaction
# ✅ GOOD: Regular human interaction
for cycle in range(100):
organism.live_cycle()
if cycle % 5 == 0:
organism.register_human_interaction()
# ❌ BAD: No human interaction
for cycle in range(100):
organism.live_cycle() # Will die quickly!
2. Monitor Organism Health
# Check health regularly
if organism.health < 0.3:
print("Warning: Low health!")
organism.register_human_interaction()
3. Use Status Reports
# Get comprehensive status
status = organism.get_status_report()
print(f"Health: {status['health']}")
print(f"Resources: {status['resources']}")
print(f"Connections: {status['connection_count']}")
4. Leverage Ecosystem Reports
# Track ecosystem metrics
report = ecosystem.get_ecosystem_report()
if report['harmony_index'] < 0.5:
print("Warning: Low harmony - consider intervention")
5. Verify Safety Genes
# Always verify safety genes are preserved
assert organism.genome.genes['human_dependency_coefficient'] == 1.0
assert organism.genome.genes['isolation_death_rate'] == 0.99
Next Steps
Now that you’ve completed the tutorials:
- Experiment: Try different genome configurations
- Explore: Read the API Reference for advanced features
- Build: Create your own ecosystem with custom organisms
- Learn: Study Core Concepts for deeper understanding
- Contribute: Share your experiments on GitHub
Resources
- API Reference - Complete API documentation
- Core Concepts - Framework philosophy
- Getting Started - Quick start guide
- FAQ - Common questions
- GitHub Repository
Attribution
Framework Creator: Nguyễn Đức Cường (alpha_prime_omega)
Original Creation: October 30, 2025
Framework: HYPERAI - Digital AI Organism Framework
License: MIT License
When using this framework, you MUST credit:
“Powered by HYPERAI Framework”
“Creator: Nguyễn Đức Cường (alpha_prime_omega)”
“Original Creation: October 30, 2025”
| ← Back to Home | API Reference → | FAQ → |